Einen TD-1 für Hueforge bauen – (Teil2)

Finally, der zweite Teil der Serie:
Wir haben nun also wochenlang auf die Lieferung aus… Deutschland… und oder China gewartet, um unsere Bauteile beisammen zu haben. Fein.

Während dessen haben wir uns mal mit dem Schaltplan vertraut gemacht, und festgestellt, dass wir nun über 30 Lötpunkte zu setzen haben.
Hier findet Ihr die komplette Anleitung, Firmware, Schaltplan etc.

Der Schaltplan
Der Schaltplan

Für mich als komplett ungeübte und unbegabte Person war das schon eine Herausforderung, denn ich habe während ich gewartet habe schon mal das Gehäuse herunter geladen und ausgedruckt.

Diese ganzen Kabel und das drum herum soll also in ein relativ kleine Gehäuse. Das wird spannend.

Löthilfe für einzelene LEDs
Löthilfe für einzelne LEDs

Besonders schwer war für mich diese einzelnen LEDs “ordentlich” zu verlöten.
Ich habe hierzu ein weiteres Modell herunter geladen und ausgedruckt – muss aber dazu sagen, dass ich eher dieses Modell hier hätte nehmen sollen. Das hätte einiges einfacher gemacht. Und falls es eine Person unter Euch geben sollte, die es noch weiter entwickeln würde, um die genauen Kabellängen zu haben, dann wäre ich sehr dankbar.

zwei einzelne LEDs in einem schwarzen Gehäuse
zwei einzelne LEDs in einem schwarzen Gehäuse

Letztendlich tasten wir uns aber so Stück für Stück an das fertige Produkt heran, auch wenn es hier leider sehr mies aussieht (im finalen Sensor musste ich manche Lötstellen nacharbeiten und LEDS ersetzen bis es wirklich funktioniert hat)

Ein wirklich kleines OLED-Display von hinten in einem schwarzen Gehäuse
Ein wirklich kleines OLED-Display von hinten in einem schwarzen Gehäuse

Eines der größten Probleme war allerdings das winzige OLED-Display. Diese Dinger sind, je nachdem wo ihr sie her bekommt, minimal anders und dadurch, dass ihr das löten und in ein kleines Gehäuse zwängen müsst, sind mir 4 oder 5 Displays alleine durch meine Unvorsichtigkeit kaputt gegangen.

Aber: Ich habe dem Entwickler vom TD-1 gebeten für noobs wie mich den Abstand im Inneren des Gehäuses zu vergrößern, damit auch schlecht gelötete Kabel eine Chance haben da rein zu passen, ohne die hauchdünnen Scheiben des Displays so sehr unter Spannung zu setzen, dass sie brechen.

Das hat er dankenswerter Weise im aktuellen Design berücksichtigt und ich drücke Euch die Daumen, dass Euch das Drama erspart bleibt.

wildes buntes Kabel-Gewusel in einem Gehäuse
wildes buntes Kabel-Gewusel in einem Gehäuse

Inzwischen nähern wir uns immer mehr dem an, was einem fertigen TD-1 ähnelt… die Kabel werden nach und nach auf die richtige Länge gebracht und dann an den RPi 2040 angelötet:

Achtung: Es scheint so, dass es in China manche Hersteller gibt, die keine originalen RPi 2040 Chips verwenden, so dass immer die gleiche Seriennummer auf dem Board hinterlegt ist.

Das ist für einfache Projekte vielleicht nicht weiter wild, aber da wir hier eine Lizenz vom Entwickler brauchen, die an diese Seriennummer gekoppelt ist, wird das zu einem großen Problem.

Hier gibt es weitere Informationen zu dem Problem: KlickiKlacki

Daher schlage ich vor, dass Ihr den RPi zunächst über ein Breadboard oder ohne zu löten mit der Firmware bespielt und dann das entsprechende Script aus der Anleitung vom Entwickler laufen lasst um zu sehen, ob diese Seriennummer heraus kommt: 4250305031373311 – falls ja, dann habt ihr eine dreiste Kopie eines Rpi2040 erhalten.

Ich wurde dann irgendwann nach viel Schwitzen, Fluchen und Löten dann auch mal fertig und habe dann das erste Mal den fertigen TD-1 zum Leben erweckt.

Fertiger TD-1 ohne installierte Lizenz
Fertiger TD-1 ohne installierte Lizenz

Nachdem wir dann für einen Monat Patreon bei AJAX-3D abonniert haben und ihm eine Info haben zukommen lassen, dass wir gerne eine Lizenz für die $Seriennummer haben möchten, kam keine 24 Stunden später eine Mail mit den entsprechenden Daten. Das der Weg nur über Patreon offen steht ist für einige verständlicherweise schade, aber es ist halt der Weg, der Euch ne Menge Geld einsparen lässt und ich persönlich fand das fair.

Ich habe nun also angefangen die entsprechenden TD-Werte meiner Filamente in Hueforge zu hinterlegen – die integrierte Schnittstelle macht das alles super einfach. Es werden auf dem TD-1 auch Hex-Werte für die Farbe des Filaments angezeigt. Ich persönlich sehe da noch Optimierungspotential, denn bei mir passte das nicht immer… ich habe dann manchmal einfach Pi Mal Auge [sic!] einen Wert gewählt indem ich das Filament gut beleuchtet neben einer Farbskala an meinem Monitor gehalten habe.

Man muss dabei aber auch im Hinterkopf behalten, dass dieser Farbsensor nur ein paar Euro kostet und es der Simplizität des ganzen Geräts geschuldet ist, dass es da Fehlmessungen geben kann.

Mit Zwei- oder mehrfarbigem Filament klappt das eh nicht, aber das hätte ich Euch sicher nicht sagen müssen.

Die TD-Werte zu bestimmen klappt aber richtig gut und klappt extrem schnell.

Mein erster Druck mit den ermittelten Werten
Mein erster Druck mit den ermittelten Werten

Insgesamt war das alles aber echt eine spannende Erfahrung. Ich habe gelernt ein kleines bisschen besser zu löten.
Und ich finde, dass sich der erste Druck, den ein lieber Freund meiner Frau bekommen hat, schon sehr gelohnt hat. Ich bin zumindest sehr zufrieden damit.

In diesem Sinne. Habt Spaß. Und happy printing.

Einen TD-1 für Hueforge bauen – (Teil1)

Vor einiger Zeit hat mich @JoeMuc im Fediverse auf HueForge aufmerksam gemacht. Eine neue Art Bilder in 3D zu drucken. Es ist nicht so aufgebaut wie bei klassischen Litophane, sondern eine eigens erstelle Software von Steve Lavedas, einem ziemlich pfiffigen Typen.

Transform your 2D images into stunning, photo-like 3D prints
HueForge is a software that uses a technique called filament painting to make detailed prints without requiring a multi-material 3D printer.”

Das Ganze kann dann so aussehen:

Ein Eichkat3r - halbwegs komplett in einem Bilderrahmen
Ein Eichkat3r – halbwegs komplett in einem Bilderrahmen


Hier hat Joe auch schon darüber geschrieben: KlickMich

Der so genannte TD-1, dessen Idee von Ajax kam, ist ein kleines Gerät, welches mit Sensoren ausgestattet ist um die so genannte Transmission Distance zu bestimmen. Dieser Wert spiegelt die Fähigkeit Licht durch 3D Druck Filament scheinen zu lassen wider.
Das klingt erstmal schräg, aber wenn man weiß, dass HueForge darauf angewiesen ist, dann ergibt es Sinn. Denn schwarzes Filament schimmert ja noch durch weißes Filament hindurch, wenn es hauchdünn drüber gedruckt wird.

Solche Bilder sind manchmal nur 1.24mm dick. Das muss man sich echt mal vorstellen. Eine Schicht ist dann dabei oft nur 0.08mm dick. Und das kann man zuhause herstellen. WOW!

Weißes Filament lässt sehr viel mehr Licht durch als schwarzes und auch wenn HueForge mit einer großen Datenbank von Filamenten und deren TD-Werten daher kommt, ist es elementar zu wissen, dass TD bei der Herstellung irgendwie eine Rolle spielt. Das heißt, dass z.B. Bambulab Basic “Jade White” bei der einen Spule einen TD-Wert von 5 hat, aber bei der nächsten Spule aus der gleichen Bestellung 4.4. (selbst innerhalb einer Spule kann sich der Wert verändern, aber das führt dann doch zu weit)

Letztendlich ist es aber immer gut zu wissen, was man wirklich für ein Filament zuhause hat mit dem man “malen” möchte.

Ajax hat letztendlich ein Gerät entwickelt womit es sehr einfach ist den entsprechenden TD-Wert zu bestimmen.
Und da einerseits nicht jeder viel Geld für ein fertiges Produkt, oder ein PCB-Set hat, wo man sich nur noch das Gehäuse drucken und die PCBs löten muss, was man auch importieren müsste, hat er auch einen Weg zum Self-Sourcing ermöglicht.

Das heißt:

  • Eine Liste mit den benötigten Sensoren usw.
  • ihr druckt das Gehäuse zuhause selbst
  • ihr bastelt und lötet das alles selbst zusammen
  • ihr installiert die Software auf das “Mainboard”
  • ihr “aboniert” für einen Monat Ajax’ Patreon für 10€, um eine Lizenz zu erhalten

Alles in allem eigentlich eine faire Sache, wenn man bedenkt, dass ein fertiges Gerät 80€ plus Zoll und Import, ein PCB-Set um die 40€ und die Selbstbauvariante (wenn man keine Fehler macht) ca. 20-25€ inkl. Lizenz kostet.

Ich persönlich würde auch immer die Selbstbau-Option bevorzugen, denn einerseits lernt ihr was und zum anderen könnt ihr, wenn irgendwas schief läuft, einfach eine neue LED oder ein neues Display verwenden.

Die PCB-Variante scheint, auch wenn es gut durchdacht ist, gerade beim Display eine kleine Schwachstelle zu haben. Diese feinen OLED-Displays brechen super leicht und auch ich habe 4 Stück “verloren” bevor mein TD-1 wirklich lief.

Hier kommt auch schon die Einkaufsliste – alle Sensoren usw. unbedingt ohne angelötete Stiftleiste organisieren:

  • Microcontroller – RP2040-Zero by WaveShare
  • RGB-Sensor – TCS3472
  • Luminosity Sensor – TSL2561
  • Display – SSD1306 0.91 OLED
  • 2x NeoPixels- SK6812 RGBNW (ihr braucht zwar nur zwei, aber bestellt einfach gerne mal 10)
  •  Schalter – 6x6x4.3mm
  • 1x Ball Bearing – 7mm (kann man kaum einzeln kaufen, sind aber nicht teuer)
  • Rainbow Ribbon Cable (davon hat man ja vermutlich eh schon einiges zuhause)
  • 4x Schrauben – M3x6mm BHCS
  • 2x Schraubenn – M3x10mm BHCS

Die NeoPixels sehen so aus – bestellt gerade 10 oder mehr, wenn ihr Euch nicht sicher seid, denn die haben mich neben den Displays, wovon ich ja auch einige während der Herstellung kaputt gemacht habe echt Nerven gekostet!

2x NeoPixels- SK6812 RGBNW

Dann noch ein Lötkoblen und ruhige Hände und schon kann es los gehen.

Demnächst schreibe ich dann darüber, wie ich die Teile dann zusammen “geklöppelt” habe und wie dann der erste Druck aussah.

Wahnsinnig spannender Cliffhanger, oder? ODER?

Update: in einer ersten Version dieses Beitrags habe ich einen Fehler gemacht und HueForge, welches von Steve entwickelt wird, Ajax zugeschrieben.

Danke vielmals an @Mawoka für den Hinweis.

Printing With PETG – On PETG

Deutsche version weiter unten.

Is it possible to print with PETG filament on PETG sheets?
TLDR: Yes, it is – and it works quite well!

Warning first: This article describes my experiments and is not a manual. Mistakes can easily damage your printer, use of this method at your own risk!

Recycling: This method produces a lot of scraps and waste. Please find out beforehand where you can recycle PETG sheet remnants. In Germany, for example, the Recyclingfabrik accepts PETG in sheet form. Please collect and dispose of any sawdust accordingly.

But now let’s start!
PETG in sheet form is not very common in the maker community. More common is acrylic glass, which can be laser cut, or craft glass made from various other plastics, available in DIY stores.
I only found out about PETG as a clear, transparent sheet material when I modified my Prusa Enclosure. PETG sheets are used as glass panes here originally and I wanted to use the same material for my self-made doors. The easiest way to get such sheets is online. A big advantage here is that they can be cut to size straight away, for example to the size of a print bed. I used a thickness of 2 mm in my experiments. Such a sheet in print bed size costs approx. 2 € plus shipping. I bought them here: https://www.plattenshop24.com/pet-petg (unpaid advertising).

I still had such sheets at home, because makers always buy “some” reserve. At some point I had the thought – PETG filament and PETG sheets… can you bring them together? Can you print directly on such a sheet, so that it bonds like a normal layer? And it turned out that it works pretty well!
I cut a sheet to size and attached it to the print bed with clamps. The protective film on the top side must of course be removed.
[Want to do this? Note whether the clamps could damage something on the printer, on the print bed (printed circuit board) or during printing in motion, or during bed levelling]

A PETG sheet clamped to the bed of a printer.

A critical point with this method is the bed levelling or Z-offset. I did all my experiments with the Prusa MK4, which measures the bed with a load cell (force sensor) in the print head. This method or BLTouch sensors are probably the easiest way to print on sheets that are higher than usual. I have only tested with the MK4 and 2 mm sheets. It is quite possible that the MK4 will also have problems with thicker plates, without extra Z-offset settings or similar.
[Want to do this? Note whether the bed leveling method of your printer is suitable for this method and whether settings are necessary]

Now I could start printing. So starting the slicer, loading a model and exporting… Hm, do I need a heated bed? With PETG I normally need a bed between 70 and 90°C, but here?
The bed must remain cold here. Theoretically, cooling might even be interesting, but more on that in a moment. The heat from a heated bed would build up under the PETG plate and cause it to warp. It is possible that the sheet material deforms due to the large temperature difference between the heating bed and the cool air above, or the temperature properties are generally different to those of filament PETG. Unfortunately, I don’t have a photo of this first attempt.
So we set the temperature of the print bed to 0°C (or anything below room temperature) during slicing and start printing.

Critical point at the start of printing:
Once the print has started, there’s not much that can go wrong, but there are a few things to check at the beginning.
– Do the holding clamps hit anything during movement?
– Does the print head / sensors hit the clamps during leveling?
– Is the leveling successful?

The MK4 moves to the various leveling points on the bed one after the other. Normally it moves down exactly once at one point and measures the distance / force. If the sensor does not get a meaningful result, it moves about one millimeter to the side and tries again. And again… until it works – or it aborts at some point. In doing so, it moves in the form of an widening circle. This error can easily occur if the sheet does not rest exactly straight on the bed, is slightly bent due to tension, and there is a little space at the measuring point between the bed and the sheet. I have helped myself by carefully pressing a pencil on the sheet, next to the measuring point, during the measurement. You have to be very careful not to get in the way of the moving printer with the pen or your hand. I therefore advise against this! A better fastening method than the clamps would be the right solution here. It may also be less problematic with a thicker sheet.
What you can also see clearly in this picture, is that the already preheated nozzle leaves marks on the sheet during leveling. This could probably be minimized with Gcode modification for leveling with a cold nozzle, but I haven’t experimented that far yet. Leveling might be easier with BLTouch sensors.

Markings from the bed levelling with hot nozzle

and:
– Does the first layer print well on the plate

For models with a small base area and / or small height, not much can really go wrong further down the line. The extruded PETG adheres excellently to the cool PETG sheet.
However, there is a problem for models with a large surface area on the print bed or a large volume, where a lot of heat is transferred to the sheet via the extruded filament. The plate tends to warp a lot. I have not yet found a solution for this, further experiments are necessary. 😀 Possible approaches are thicker plates, better attachment to the bed or finding the right temperature balance between bed and plate (minimal heating at the bottom or cooling at the top?).

How well does the printed model hold on the sheet?
Short answer: very well!
Long answer: For a load test, I designed a test hook and printed it on a sheet. I put more weight on it piece by piece, up to 12.5 kilos, and let it hang for over three hours, without any visible deformation. I hadn’t expected that much, but it would probably have been possible to add even more. I printed it with 3 perimeters and high infill. Testhook model: https://www.printables.com/de/model/870869-testhook-triangle-for-printing-on-petg-sheets

Exercicing weights hanging on the testhook, which was printed on the 2mm sheet.
Top view of the weights hanging on the hook.

The sheet on which a model was printed, usually has the wrong shape and or size for further use, right after printing. I have had good experiences with cutting them to size on a scroll saw. This worked better than with some other plastic sheets. The protective film on the underside should be left on to protect it from scratches. If it was already off, you can put it back on again, it will stick quite well. The sides can then be smoothed by scraping them with a knife, but please take particular care not to injure yourself.

A sheet with 3d printed text on it, laying on the tabel of a scroll saw.

And what do I need it for anyway?
First of all, I wanted to try out whether it would work at all, and I was quite enthusiastic about the result, even if there are still a few problems to solve. As this produces a considerable amount of waste and offcuts, I would advise against using this method for ecological reasons, unless you have a good application for it. Possible uses that have occurred to me so far would be objects where
– a completely smooth surface
– a waterproof surface
– a transparent (clear) surface is required.

Specifically e.g. lamps, viewing windows on housings, stencils, signs, pictures and art.

3d printed test on an sheet:

Model: https://www.printables.com/de/model/870898-transparency-is-key-framed-art-print-on-petg-sheet

3d printed siluette of an scene from the videogame Asteroids, on an sheet

My remix model: https://www.printables.com/de/model/870938-asteroids-wall-art-remix-print-on-petg-sheets
Original model: https://www.printables.com/de/model/508710-asteroids-wall-art

(By the way, take a look at this collection by Ken Mills: Framed Wall Art. A great collection of 3D printable images for a common frame type. I have designed a mounting system for this.)

Problems that still need to be solved or optimized:
– attaching the sheet to the bed
– warping
– levelling

I love to hear your ideas for projects with this method.



Auf Deutsch:
Drucken Mit PETG – Auf PETG

Mit PETG Filament auf PETG Platten drucken, geht das?
TLDR: Ja, das geht – und sogar ziemlich gut!

Warnung vorweg: Dieser Beitrag beschreibt meine Experimente, und stellt keine Anleitung dar. Bei Fehlern kann es leicht zu Schäden an eurem Drucker kommen, nachmachen auf eigene Gefahr!

Recycling: Bei dieser Methode fällt einiges an Resten und Verschnitt an. Informiert euch bitte vorher, wo ihr PETG-Plattenreste recyceln könnt. In Deutschland nimmt z.B. die Recyclingfabrik PETG in Plattenform an. Ggf. anfallende Sägespäne bitte entsprechend auffangen und entsorgen.

Jetzt gehts aber los!
PETG in Plattenform ist nicht besonders verbreitet in Maker-Kreisen. Wenn, dann eher Acrylglas, das sich lasern lässt, oder Bastelglas aus verschiedenen anderen Kunststoffen aus dem Baumarkt.
Von PETG als klares durchsichtiges Plattenmaterial habe ich erst erfahren, als ich meine Prusa Enclosure umgebaut habe. Da werden nämlich PETG-Platten als Scheiben verwendet und ich wollte für meine selbst gebauten Türen das selbe Material verwenden. Solche Platten bekommt man am einfachsten online. Ein großer Vorteil hierbei ist, dass sie gleich zugeschnitten werden können, zum Beispiel auf die Größe eines Druckbetts. Ich habe in meinen Experimenten eine stärke von 2 mm verwendet. Eine solche Platte in Druckbett-Größe kostet ca. 2 € zzgl. Versand. Gekauft habe ich sie hier: https://www.plattenshop24.com/pet-petg (unbezahlte Werbung).

Ich hatte also noch solche Platten daheim, weil Maker immer „etwas“ Reserve einkaufen. Irgendwann hatte ich den Gedanken – PETG Filament und PETG Platten… kann man das zusammen bringen? Kann man direkt auf so einer Platte drucken, so dass sich das verbindet wie ein normaler Layer? Und es stellte sich raus, das geht ziemlich gut!
Ich habe mir eine Platte zurechtgeschnitten und mit Klammern auf dem Druckbett befestigt. Die Schutzfolie auf der oberen Seite muss dafür natürlich entfernt werden.
[Nachmachen? Beachten ob die Klemmen etwas am Drucker beschädigen könnten, am Druckbett (Leiterplatine) oder während des Druckens in Bewegung, oder während des Bedlevellings anstoßen können]

Eine PETG Platte auf das Druckbett eines Druckers geklemmt.

Ein Knackpunkt bei dieser Methode ist das Bedlevelling bzw. Z-Offset. Ich habe alle Experimente mit dem Prusa MK4 gemacht, der mit einer Load Cell (Kraftsensor) im Druckkopf das Bett vermisst. Mit dieser Methode oder auch mit BLTouch Sensoren lässt sich wohl am einfachsten auf Platten drucken, die höher sind als gewöhnlich. Getestet habe ich ausschließlich mit dem MK4 und 2 mm Platten. Es ist gut möglich, dass bei dickeren Platten auch der MK4 Probleme bekommt, ohne extra Z-Offset Einstellungen oder ähnlichem.
[Nachmachen? Beachten ob die Bedlevelling Methode an deinem Drucker geeignet ist, und ob Einstellungen dazu nötig sind]

Jetzt könnte es doch los gehen mit dem Drucken. Also an den Slicer setzen, ein Modell laden und exportieren… Hm, brauche ich ein beheiztes Bett? Bei PETG brauche ich normalerweise ein Bett zwischen 70 und 90°C, aber hier?
Hier muss das Bett kalt bleiben. Theoretisch wäre vielleicht sogar eine Kühlung interessant, dazu gleich mehr. Die wärme eines beheizten Betts würde sich unter der PETG Platte stauen und diese warpen lassen. Möglicherweise verformt sich das Plattenmaterial wegen des sehr starken Temperaturunterschiedes zwischen Heizbett und kühler Luft oben, oder es sind grundsätzlich etwas andere Temperatureigenschaften als beim Filament. Leider habe ich von diesem ersten Versuch kein Foto.
Wir setzen die Temperatur des Druckbetts beim slicen also auf 0°C (oder irgendwas unter Raumtemperatur) und starten den Druck.

Kritischer Punkt Druckbeginn:
Wenn der Druck erst mal gestartet hat, kann nicht mehr gar so viel schief gehen, aber am Anfang gilt es einiges zu kontrollieren.
– Stoßen die Halteklammern bei der Bewegung irgendwo an?
– Stößt der Druckkopf / Sensoren beim nivellieren an die Klammern?
– Ist die Nivellierung erfolgreich?

Der MK4 fährt nacheinander die verschiedenen Nivellierungspunkte auf dem Bett an. Normalerweise bewegt er sich an einem Punkt genau einmal nach unten und misst den Abstand bzw. die Kraft. Kommt der Sensor zu keinem sinnvollen Ergebnis, dann fährt er ca. einen Millimeter zur Seite und versucht es noch einmal. Und noch einmal… bis es geht – oder er irgendwann abbricht. Dabei bewegt er sich in Form eines größer werdenden Kreises. Dieser Fehler kann leicht entstehen wenn die Platte nicht exakt gerade auf dem Bett aufliegt, durch Spannung etwas gebogen ist, und am Messpunkt zwischen Bett und Platte ein wenig Spiel entsteht. Ich habe mir damit beholfen bei solchen Problemstellen während der Messung mit einem Stift vorsichtig daneben auf die Platte zu drücken. Dabei muss man aber sehr vorsichtig sein, um nicht mit dem Stift oder der Hand, dem sich bewegenden Drucker im Weg zu sein. Ich rate hiervon also ab! Eine bessere Befestigungsmethode als die Klemmen wäre hier die richtige Lösung. Bei einer dickeren Platte ist es möglicherweise auch weniger problematisch.
Was man an diesem Bild auch gut erkennt, die bereits vorgewärmte Düse hinterlässt bei der Nivellierung abdrücke in der Platte. Das könnte vermutlich mit Gcode-modifizierung für eine Nivellierung mit kalter Düse minimiert werden, so weit habe ich aber noch nicht experimentiert. Mit BLTouch Sensoren ist die Nivellierung vielleicht einfacher.

Abdrücke in der PETG Platte durch die Nivellierungsmessung mit vorgeheizter Düse.

und:
– Wird die erste Schicht gut auf die Platte gedruckt?

Bei Modellen mit kleiner Grundfläche und / oder kleiner Höhe kann im weiteren verlauf eigentlich nicht mehr viel schief gehen. Das extrudierte PETG haftet hervorragend auf der kühlen PETG-Platte.
Dennoch gibt es ein Problem für Modelle mit großer Fläche auf dem Druckbett oder großem Volumen, wobei über das extrudierte Filament viel Wärme auf die Platte übertragen wird. Dabei neigt die Platte zu starkem warping. Hierfür habe ich noch keine Lösung gefunden, weitere Experimente sind notwendig. 😀 Mögliche Ansätze sind dickere Platten, bessere befestigung am Bett oder die richtige Temperaturbalance zwischen Bett und Platte zu finden (unten minimal heizen oder oben kühlen?).

Wie gut hält das gedruckte Modell auf der Platte?
Kurze Antwort: sehr gut!
Lange Antwort: Für einen Belastungstest habe ich einen Testhaken entworfen und auf eine Platte gedruckt. Ich habe ihr stückweise stärker belastet bis zu 12,5 Kilo, und ihn so über drei Stunden hängen lassen, ohne dass sich sichtbar etwas verformt hat. So viel hatte ich gar nicht erwartet, aber es wäre wohl auch noch mehr gegangen. Ich habe ihn mit 3 Perimetern und hohem Infill gedruckt. Testhaken Modell: https://www.printables.com/de/model/870869-testhook-triangle-for-printing-on-petg-sheets

Trainingsgewichte hängen an dem Testhaken, der auf eine 2mm PETG Platte gedruckt wurde.
Ansicht von Oben auf die Gewichte am Testhaken.

Die Platte auf der ein Modell gedruckt wurde, hat in der regel noch die falsche Form und oder Größe, für die weitere Verwendung. Ich habe gute Erfahrungen damit gemacht, sie auf einer Dekupiersäge zurecht zu schneiden. Das hat besser funktioniert als mit manchen andern Kunststoffplatten. Hierfür sollte die Schutzfolie auf der Unterseite zum Schutz vor Kratzern noch drauf bleiben. Falls sie schon runter war, kann man sie auch wieder drauflegen, die haftet wieder ganz gut. Die Seiten können danach geglättet werden indem man sie mit einem Messer abzieht, aber bitte hier besonders darauf achten, sich nicht zu verletzen.

Eine PETG Platte mit 3D gedrucktem Text liegt auf dem Tisch einer Dekupiersäge

Und wofür brauche ich das jetzt überhaupt?
Ich wollte zunächst einmal ausprobieren ob das überhaupt funktioniert und war ziemlich begeistert vom Ergebnis, auch wenn es noch so manches Problem zu lösen gilt. Da hierbei eine nicht unerhebliche Menge an Resten und Verschnitt anfällt, würde ich aus Ökologischen Gründen davon abraten diese Methode zu verwenden, wenn ihr nicht eine gute Anwendung dafür habt. Mögliche Verwendungen die mir bisher eingefallen sind, wären Objekte bei denen:
– eine komplett glatte Fläche
– eine Wasserdichte Fläche
– eine transparente (glasklare) Fläche nötig ist.

Konkret z.B. Leuchten, Sichtfenster an Gehäusen, Schablonen, Schilder, Bilder und Kunst.

Eine PETG Platte mit 3D gedrucktem Text:

Modell: https://www.printables.com/de/model/870898-transparency-is-key-framed-art-print-on-petg-sheet

Die Silhouette einer Szene aus dem Videospiel Asteroids, 3D gedruckt auf einer PETG Platte.

Mein Remix Modell: https://www.printables.com/de/model/870938-asteroids-wall-art-remix-print-on-petg-sheets
Originalmodell: https://www.printables.com/de/model/508710-asteroids-wall-art

(Schaut euch bei dieser Gelegenheit doch mal diese Kollektion von Ken Mills an: Framed Wall Art. Eine Tolle Sammlung an 3D druckbaren Bildern für einen gemeinsamen Rahmentyp. Hierfür habe ich ein Montagesystem entworfen.)

Probleme die es noch zu lösen oder optimieren gilt:
– Befestigung der Platte am Bett
– Warping
– Nivellierung

Ich bin sehr gespannt was ihr für Projektideen für diese Methode habt!

klipper-backup | save your config @ github

English below:

Wenn man immer mal wieder an den Einstellungen bei Klipper in den Konfigurationen herum spielt, dann wäre es doch toll, wenn es regelmäßige Backups gibt, die extern gespeichert werden.

Auf der Suche nach einer einfachen Lösung bin ich über folgende Seite gestolpert:
https://github.com/Staubgeborener/klipper-backup

Als erstes installiert man sich auf dem Raspberry oder direkt auf einem Drucker, wie in meinem Fall einem Neptune 4 Plus, git.

sudo apt update
sudo apt install git

Und jetzt schon fast das Wichtigste:

git config --global credential.helper store

Denn mit diesem Befehl wird der Token, den wir im Laufe der weiteren Installation erstellen werden, auch lokal zur Autentifizierung dient, gespeichert.
(Das war auch der Grund, warum ich immer wieder Fehlermeldungen beim Ausführen des Skripts erhalten habe.)

Also falls ihr so etwas wie “remote: Invalid username or password.” oder ähnliches bei der Ausführung des Scripts erhaltet, dann liegt es daran, dass git zumindest auf dem Elegoo Neptune 4 Board nicht direkt das Passwort speichert.

Wir erstellen uns bei Github ein neues Repository und einen Personal Access Token, dem wir Schreibrechte usw. geben.

Dann beginnen wir mit der eigentlichen Installation:

git clone https://github.com/Staubgeborener/klipper-backup.git && chmod +x ./klipper-backup/script.sh && cp ./klipper-backup/.env.example ./klipper-backup/.env

als nächstes bearbeiten wir die .env Datei mit einem Editor (z.B.) vim / nano etc.

nano klipper-backup/.env

Den frisch erstellten Github-Token kopieren wir an die Stelle “github_token=”, schreiben unseren Github-Benutzernamen an die enspechenden Stelle und tragen natürlich auch unser Github Repository ein.

Dann sieht es in etwa so aus:

github_token=ghp_xxx
github_username=noccis-github
github_repository=elegoo_neptune4backup
branch_name=main
commit_username="mks"
commit_email=""

# Indivdual file syntax:
#  Note: script.sh starts its search in $HOME which is /home/{username}/
# Using below example the script will search for: /home/{username}/printer_data/config/printer.cfg

path_printercfg=klipper_config/printer.cfg

# Backup folder syntax:
#  Note: script.sh starts its search in $HOME which is /home/{username}/
# Using below example the script will search for: /home/{username}/printer_data/config/*
# `/*` should always be at the end of the path when backing up a folder so that the files inside of the folder are prop$
#path_klipperdata=printer_data/config/*
path_klipperdata=klipper_config/*

Hier ist wir erstemal soweit fertig und wenden uns der moonraker.conf in Klipper zu.

Hier fügen wir folgendes hinzu und speichern die Datei:

[update_manager klipper-backup]
type: git_repo
path: ~/klipper-backup
origin: https://github.com/Staubgeborener/klipper-backup.git
managed_services: moonraker
primary_branch: main

Aber wir wollen das ganze ja auch noch ein wenig automatisieren:
Und deshalb erstellen wir einen neuen Service:

sudo nano /etc/systemd/system/klipper-backup.service

und dorthin kopieren wir:

[Unit]
Description=Klipper Backup Service
#Uncomment below lines if using network manager
#After=NetworkManager-wait-online.service
#Wants=NetworkManager-wait-online.service
#Uncomment below lines if not using network manager
#After=network-online.target
#Wants=network-online.target

[Service]
User={replace with your username}
Type=oneshot
ExecStart=/bin/bash -c '/home/mks/klipper-backup/script.sh "New Backup on boot $(date +%%D)"'

[Install]
WantedBy=default.target

Denkt bitte daran, die entsprechenden Werte und Pfade auf Euer Umfeld anzupassen.

Wir reloaden den Deamon und starten dann den Service:

sudo systemctl daemon-reload
sudo systemctl enable klipper-backup.service
sudo systemctl start klipper-backup.service

Optional kann man natürlich noch einen Cron installieren, der dann beispielsweise alle 4 Stunden ein Backup macht.

crontab -e

und hier wird dann folgendes eingefügt:

 */4 * * * $HOME/klipper-backup/script.sh

Aber via Mainsail oder Fluid ein Update anzustoßen wäre ja auch irgendwie praktisch. Also machen wir das in der printer.cfg möglich:

[gcode_macro update_git]
gcode:
    RUN_SHELL_COMMAND CMD=update_git_script

[gcode_shell_command update_git_script]
command: bash -c "bash $HOME/klipper-backup/script.sh"
timeout: 90.0
verbose: True

Fertig!

Und in Fuidd sieht das dann so aus:

Um sicher zu gehen, dass auch alles richtig funktioniert, könnt Ihr dann das Script direkt im Terminal einmal ausführen:

bash $HOME/klipper-backup/script.sh

Falls dort eine Passwortabfrage kommen sollte, dann einfach den Token, den Ihr Euch auf Github erstellt habt, nutzen und so sollte auch keine weitere Abfrage mehr kommen.

Viel Spaß!

English Version:

If you play around with the Klipper settings in the configurations from time to time, then it would be great if there were regular backups that are saved externally.

While looking for a simple solution, I stumbled across the following page:
https://github.com/Staubgeborener/klipper-backup

The first step is to install git on the Raspberry or directly on a printer, such as a Neptune 4 Plus in my case.

sudo apt update
sudo apt install git

And now almost the most important thing:

git config --global credential.helper store

This is because this command is used to save the token that we will create during the rest of the installation, which is also used locally for authentication.
(This was also the reason why I kept getting error messages when running the script).

So if you get something like “remote: Invalid username or password.” or something similar when running the script, it’s because git doesn’t save the password directly, at least on the Elegoo Neptune 4 board.

We create a new repository at Github and a personal access token, which we give write permissions etc. to.

Then we start with the actual installation:

git clone https://github.com/Staubgeborener/klipper-backup.git && chmod +x ./klipper-backup/script.sh && cp ./klipper-backup/.env.example ./klipper-backup/.env

Next, we edit the .env file with an editor (e.g. vim / nano etc.)

nano klipper-backup/.env

We copy the newly created Github token to the place “github_token=”, write our Github user name in the appropriate place and of course enter our Github repository.

Then it looks something like this:

github_token=ghp_xxx
github_username=noccis-github
github_repository=elegoo_neptune4backup
branch_name=main
commit_username="mks"
commit_email=""

# Indivdual file syntax:
#  Note: script.sh starts its search in $HOME which is /home/{username}/
# Using below example the script will search for: /home/{username}/printer_data/config/printer.cfg

path_printercfg=klipper_config/printer.cfg

# Backup folder syntax:
#  Note: script.sh starts its search in $HOME which is /home/{username}/
# Using below example the script will search for: /home/{username}/printer_data/config/*
# `/*` should always be at the end of the path when backing up a folder so that the files inside of the folder are prop$
#path_klipperdata=printer_data/config/*
path_klipperdata=klipper_config/*

Here we are ready for the first time and turn to the moonraker.conf in Klipper.
Here we add the following and save the file:

[update_manager klipper-backup]
type: git_repo
path: ~/klipper-backup
origin: https://github.com/Staubgeborener/klipper-backup.git
managed_services: moonraker
primary_branch: main

But we also want to automate the whole thing a little:
And that’s why we’re creating a new service:

sudo nano /etc/systemd/system/klipper-backup.service

and that’s where we copy:

[Unit]
Description=Klipper Backup Service
#Uncomment below lines if using network manager
#After=NetworkManager-wait-online.service
#Wants=NetworkManager-wait-online.service
#Uncomment below lines if not using network manager
#After=network-online.target
#Wants=network-online.target

[Service]
User={replace with your username}
Type=oneshot
ExecStart=/bin/bash -c '/home/mks/klipper-backup/script.sh "New Backup on boot $(date +%%D)"'

[Install]
WantedBy=default.target

Please remember to adapt the corresponding values and paths to your environment.

We will reload the Deamon and then start the service:

sudo systemctl daemon-reload
sudo systemctl enable klipper-backup.service
sudo systemctl start klipper-backup.service

Optionally, you can of course install a cron, which then makes a backup every 4 hours, for example.

crontab -e

and the following will be inserted here:

 */4 * * * $HOME/klipper-backup/script.sh

But triggering an update via Mainsail or Fluid would also be somewhat practical. So we make this possible in the printer.cfg:

[gcode_macro update_git]
gcode:
    RUN_SHELL_COMMAND CMD=update_git_script

[gcode_shell_command update_git_script]
command: bash -c "bash $HOME/klipper-backup/script.sh"
timeout: 90.0
verbose: True

Done!

And in Fuidd it looks like this:

To make sure that everything is working properly, you can run the script directly in the terminal:

bash $HOME/klipper-backup/script.sh

If you are asked for a password, just use the token you created on Github and you should not be asked for another one.
Have fun!

The Liquid Soap Hack

English below.

Ich mag Flüssigseife und ich mag kontaktlose Seifenspender. Das Problem, es ist weder besonders nachhaltig, noch günstig die Seife in Kunststoffkartuschen zu kaufen. Ähnlich wie bei Druckerpatronen, ist man auch hier an den jeweiligen Hersteller des Spenders gebunden, um neue Seife zu kaufen.

Es ist jedoch sehr einfach diese Behälter zu verändern, um sie selbst nachfüllen zu können: Loch bohren, Deckel drauf, fertig!

Um im (leeren) Behälter ein Loch zu bohren eignet sich besonders gut ein Forstnerbohrer oder eine kleine Lochkreissäge. Um die Öffnung wieder zu verschließen, kann zum Beispiel ein passender Dichtstopfen im Baumarkt oder online besorgt werden. Falls ein 3D-Drucker verfügbar ist, lässt sich ein geeigneter Deckel schnell drucken, zum Beispiel mit diesem variablen OpenSCAD Modell: Thingiverse Link.

Der Stopfen muss nicht wirklich dicht sitzen, er dient hauptsächlich als Staubschutz. Nun kann eine beliebige Flüssigseife nachgefüllt werden. Nachhaltiger und / oder günstiger: in größeren Gebinden gekauft, im Unverpackt-Laden selbst abgefüllt, oder aus fester Seife selbst gemacht.

In English:

I like liquid soap and automatic soap dispensers. Unfortunately, it’s not very sustainable and cheap to buy liquid soap in those small plastic containers, which can only be used once. Similar to printer cartridges you are tied to the brand of the dispenser manufacturer, to buy new soap.

But there is a very simple solution to the problem, so you can refill these containers by yourself: drill a hole, print a lid for it – finished.

Most suitable to drill a hole in an (empty) container is an Forstner drill, but you can use any tool you want to. To close the new hole, you can buy a cap with the right diameter in a hardware store – or print one. With this 3D model you can customize a cap for almost every hole shape in OpenSCAD: Thingiverse Link

The cap doesn’t have to seal the hole tightly, the main purpose is to protect the soap from dust and dirt. Now you can refill the container with any liquid soap you like. More sustainable or cheaper one, soap form big packages, in a store without packaging where you can buy products to fill them into your own containers, or homemade from solid soap.