TD-free! More fun?

Recently, I took you along on my journey with the TD1 from Ajax3D, sharing both the ups and downs of using it with HueForge.

Meanwhile, Mawoka thought, “There must be an easier and cheaper way!” And voilà, the TDfree was born!

What can I say? He nailed it! Even though I built the TD1 myself to save money, there were minor hiccups that raised costs and dampened my spirits. Breaking the second or third display because they’re so fragile isn’t fun. In total, I spent way more than the estimated €15 for materials and €10 for a Patreon license.

A Little Disclaimer: I’ve known Mawoka, aka Marlon, for a while and was aware of his project. So, I asked if I could review his TDfree for this blog. He agreed and, knowing my financial situation, offered me the board at cost plus shipping.

You might think: “Advertising? On this blog? Meh!” Yeah, maybe – but hey, I would have bought his board eventually and reviewed it here anyway.
So, let’s dive into this with an open mind!

Okay… enough preamble—let’s get to the star of the show: the TDfree.

TDfree

As the name suggests, it’s a FOSS version of a device used to measure the TD value of your filaments.

What’s the TD Value? It’s basically how much light can pass through a filament. The higher the value, the more light shines through, allowing you to print colorful images with HueForge.

HueForge Bild - Angus Young von AC/DC auf der Bühne stehend und den Zeigefinger Richtung Publikum zeigend.
HueForge Picture / Angus Young

There’s also a self-source version (V2) of TDfree that’s cheaper and easier to solder and assemble than Ajax3D’s version.

Today we’re focusing on version 3 of TDfree. It comes as an assembled board that you can house in a printed case or as a complete small box.

I chose the board to show you all the steps needed to make it operational. The PCB arrived quickly at my home and looked great right out of the box.

Mawoka aims to reduce waste by using small old anti-static bags for electronic components—a move I really appreciate!


A neat little feature: There’s a 3D-printed “bend protection” on the back of the board made from PHA to keep cables safe during transport.

A QR code was included with the board that led me to an installation guide.
Clear instructions with pictures are showing you exactly what to do.

The case for TDfree is available on Printables. You need to print the two small parts in black where the filament passes through; however, you can customize the case colors as you like. For simplicity, I printed them in black PETG.

black case and inner parts and a violet lid with
case of the TDfree

I added the text “TD.free” on the lid, which you can find as a remix on Printables.

Assembly was super easy! I had to remove a tiny bit of material from the PCB with a deburrer to fit it perfectly into the case—no big deal at all!

Before final assembly, check if your filament slides smoothly; adjustments may be needed due to printing inaccuracies.

Now that everything’s assembled, it’s time to power up TDfree using a standard USB-C cable with 5V from any modern phone charger.

A WiFi access point named “TD-free” appears, allowing connection with your laptop or phone. If not redirected automatically, enter: http://192.168.17.1

Screenshot des AccessPoints
TDfree Access Point Website

You can now determine your filaments’ TD values via AccessPoint or input your WLAN data in “Wifi-Config,” connecting TDfree to your network for local access.

I noticed differences between Ajax3D’s TD1 values and those from TDfree – an average deviation of -0.8.
Not an issue if you use either device exclusively but worth noting if using both devices simultaneously in HueForge or Spoolman (if applicable).

Update: With firmware 0.2.0, you can set an offset so that TDfree and TD1 values don’t differ significantly after reporting my finding to Mawoka.

So, what would I chose if I would not know anythig about those TD-determing devices and just want to start making cool 3D prints at home?

Short answer: I choose the TDfree

Long answer: It’s cheaper, smaller, easier to assemble yet reliable in determining relative TD values; its firmware is FOSS available on GitHub—simple solutions are my jam!

Moreover: no need for Patreon registration for a €10 “donation” for a tied license bound to the unique serial number of the Rpi2040 like with TD1 – not fond of such practices!

Some may miss the dispay or the HueForge integration – but personally dislike those mini-OLED displays.
Furthermore, the TD1’s color recognition doesn’t always work well enough, so I’ve switched to using eyeballing to determine the colors of my filament in HueForge anyway.


Update 2: Mawoka is working meanwhile with the HueForge developer; an integration into HueForge is expected soon though no exact ETA yet—exciting news indeed!

Consider supporting someone providing real value within HueForge community by purchasing Mawoka’s fully assembled board (€24 plus shipping) or a complete unit with case at fair price!

Thank you for reading!

PS: If financially constrained like me, contact Mawoka via shop email – you might find a solution enabling cool HueForge prints!